Tässä artikkelissa tutkimme Gibbsin energia:n vaikutusta nyky-yhteiskuntaan. Syntymisestään lähtien Gibbsin energia on ollut perustavanlaatuinen rooli jokapäiväisen elämän eri aloilla politiikasta populaarikulttuuriin. Vuosien varrella Gibbsin energia on herättänyt keskustelua ja kiistoja, ja sitä juhlivat ja kunnioittavat miljoonat ihmiset ympäri maailmaa. Kattavan analyysin avulla tutkimme, kuinka Gibbsin energia on muokannut tapaamme havaita maailmaa ja vaikuttaa päätöksiimme ja käyttäytymiseemme. Lisäksi tutkimme Gibbsin energia:n tulevaisuutta ja sitä, kuinka sen kehitys voisi edelleen vaikuttaa elämäämme tulevina vuosina.
Gibbsin energia,[1] joka tunnetaan myös nimellä Gibbsin vapaaenergia tai Gibbsin funktio on termodynaaminen potentiaali, joka kuvaa suurinta mahdollista työtä, jonka reversiibeli prosessi voi tehdä vakiopaineessa ja -lämpötilassa, kun ilmakehää vastaan tehtyä työtä ei huomioida.[2] Gibbsin energia on nimetty Josiah Willard Gibbsin mukaan, ja sen yksikkö on joule (J).
Klassisessa termodynamiikassa tutkitaan termodynaamisen järjestelmän (engl. system) tasapainon määräytymistä ja tasapainotilan ominaisuuksia. Kemiallisessa vapaaehtoisessa muutoksessa (kuten kemiallisessa reaktiossa) paineen ja lämpötilan ollessa vakioina tasapainotila saavutetaan kun Gibbsin vapaaenergia reaktioajan funktiona saa pienimmän arvonsa. Tässä tasapainotilassa .
Gibbsin vapaaenergia määritellään sisäenergian ja entropian avulla:
Derivoimalla yhtälön (1) saadaan . Kun järjestelmässä tehdään vain laajenemistyötä ( ) saadaan Gibbsin vapaaenergialle hyvin tärkeä riippuvuus reaktiopaineesta ja reaktiolämpötilasta:
Gibbsin vapaaenergian kokonaisdifferentiaali paineen ja lämpötilan suhteen on
Vertaamalla yhtälöitä (2) ja (3) toisiinsa, voidaan todeta, että vakiolämpötilassa pätee[3]
Yhtälöstä (4) on todettavissa, että Gibbsin vapaaenergia suurenee kun paine suurenee. Edelleen voidaan todeta, että yhtälön (4) tilavuussuure voidaan esittää ideaalikaasun tilanyhtälön avulla, joten Gibbsin vapaaenergialle saadaan . Jos esim. kemiallisen reaktion tapauksessa reaktiopaine muuttuu :sta :hen, niin Gibbsin vapaaenergian muutos reaktiolle on:
Reaktion tasapainovakion tarkastelussa Gibbsin vapaaenergia suhteutetaan standardiseen Gibbsin vapaaenergiaan , joka on 1 mol kaasua standardipaineessa (1 bar): .
Tarkasteltaessa yhtälöä (2) ja otettaessa paine vakioksi, voidaan Gibbsin vapaaenergian lämpötilariippuvuudelle kirjoittaa[4]
Yhtälöstä (6) voidaan todeta, että Gibbsin vapaaenergia pienenee lämpötilan suurentuessa. Toisaalta Gibbsin vapaaenergia voidaan ilmaista entalpian avulla: . Jakamalla tämä yhtälö termeittäin lämpötilallaA ja sen jälkeen osittaisderivoimalla lämpötilan suhteen saadaan
Yhtälössä (7) kaksi viimeistä termiä ovat toistensa vastalukuja,B joten saadaan
Yhtälö (8) sovellettuna kemialliselle muutokselle tai reaktiolle on
Yhtälö (9) on keskeinen, koska se suhteuttaa reaktion Gibbsin vapaaenergian muutoksen lämpötilariippuvuuden (so. reaktion tasapainotilan) reaktion entalpian muutokseen.
Klassisen termodynamiikan avulla ei voi laskea absoluuttista :n arvoa, sen sijaan voidaan laskea määrittämällä ensin
Termodynamiikan ensimmäisessä pääsäännössä määritetään järjestelmän (engl. system) sisäenergia järjestelmään absorboidun lämpömäärän ja järjestelmässä tehdyn työn avulla[5]
Clausiuksen teoreeman mukaan palautuvalle (reversiibeli) muutokselle yhtälöön (10) sijoitettuna saadaan: . Työn käsitettä voidaan laajentaa ottamalla laajenemistyön (PdV) ohella mukaan myös muu kuin laajenemistyö, kuten sähkötyö. Tällöin merkitään yhtälössä (10) työlle .[6]
Yhtälö (11) ilmaisee vapaaehtoisen muutoksen olosuhteita tilafunktioiden ja tiefunktioiden (engl. path function) avulla. Isotermisessä muutoksessa lämpötila on vakio,C joten yhtälö (11) voidaan kirjoittaa
Kemiallisessa reaktiossa, isotermisessä muutoksessa myös paine on vakio, koska reaktiopaine vastaa ympäristön painetta. Tällöin yhtälö (12) sieventyy: , jossa sulkulauseke on määritelty Gibbsin vapaaenergiaksi. Tämä huomioiden saadaan
Yhtälö (13) ilmaisee vaatimusta vapaaehtoiselle isotermiselle muutokselle ja sen tasapainotilalle kun paine on vakio. Jos kyseessä on palautuva (reversiibeli) muutos, niin Gibbsin vapaaenergia on mitta suurimmalle mahdolliselle muulle kuin laajenemistyölle. Esimerkkinä tästä on polttokennossa tapahtuva sähkötyö.
Käytännössä kemiallisen reaktion lopputila, joka vastaa reaktion tasapainoa, löydetään kun minimoidaan Gibbsin vapaaenergia. Tästä voidaan määrittää reaktion lopputuotteiden koostumus: siinä esiintyvät yhdisteet ja niiden pitoisuudet, kiderakenteet ja faasit. Käytännössä lasku on helpointa tehdä kirjoittamalla lähtöaineiden ja tuotteiden Gibbsin vapaaenergiat koostumuksen tai osapaineiden funktioina ja merkitsemällä alkutilanteen ja lopputilanteen kokonais-Gibbsin energiat yhtä suuriksi. Tästä voidaan reaktion lopputilanteen koostumus ratkaista.
Viime aikoina on alettu pohtia Gibbsin energian merkitystä elämän kannalta katsoen, sillä biologiset prosessit tapahtuvat tyypillisesti likimain vakiopaineessa ja -lämpötilassa. Venäläinen kemisti Georgi Gladyshev on ehdottanut biologisen evoluution määrittelemistä Gibbsin energiaa apuna käyttäen.[7]
A Koska tasapainovakio on verrannollinen suureeseen .
B Sisäenergialle pätee ja toisaalta , joten . Vakiopaineessa pätee taas .[8][9]
C Kirjoitettaessa, että lämpötila ja paine (tai tilavuus) ovat vakioita, ei tämä tarkoita niiden olevan vakioita prosessin tai reaktion aikana, vaan näiden suureiden arvot ovat samat prosessin alussa ja lopussa.