Tässä artikkelissa aiomme tutkia Olkiluodon ydinvoimalaitos:tä ja sen vaikutuksia jokapäiväisen elämän eri osa-alueisiin. Olkiluodon ydinvoimalaitos on ollut kiinnostuksen ja keskustelun aiheena pitkään, ja sen vaikutus ulottuu useille alueille politiikasta populaarikulttuuriin. Sukellaan eri näkökohtiin, jotka tekevät Olkiluodon ydinvoimalaitos:stä relevantin ja mielenkiintoisen aiheen, ja analysoimme, miten se on kehittynyt ajan myötä. Sen alkuperästä sen nykyiseen merkitykseen sukeltamme täydelliseen analyysiin Olkiluodon ydinvoimalaitos:stä ja sen merkityksestä yhteiskunnassamme.
Olkiluodon ydinvoimalaitos sijaitsee Olkiluodon saarella Eurajoella, ja sen omistaa Teollisuuden Voima Oyj (TVO). Laitoksella tuottaa sähköä kaksi kiehutusvesireaktoria, joiden molempien nettosähköteho on 890 megawattia[1]. Vuosittainen sähköntuotanto on vajaat 15 terawattituntia. Vuonna 2014 tuotanto oli 14,8 TWh, joka on noin 18 prosenttia Suomessa kulutetusta ja noin 23 prosenttia maassa tuotetusta sähköstä[2].
Olkiluodon kolmas yksikkö EPR-tyyppinen painevesireaktori käynnistettiin 21. joulukuuta 2021, ja sähköntuotanto sillä alkoi maaliskuussa 2022.[3] Reaktorin oli alun perin määrä valmistua jo toukokuussa 2009, mutta laitostoimittaja lykkäsi valmistumisajankohtaa useita kertoja[4][5]. Uuden ydinvoimalaitosyksikön toimitti Areva NP:n ja Siemens AG:n muodostama konsortio. Areva toimitti reaktorin, ja Siemens vastasi turbiinilaitoksesta.
Vuonna 2010 TVO sai valtioneuvoston periaatepäätöksen vielä neljännen ydinvoimalayksikön rakentamisesta[6]. Vuonna 2015 TVO päätti olla hakematta hankkeelle rakennuslupaa[7].
TVO tuottaa osakkailleen sähköä Mankala-periaatteella eli myy tuottamansa sähkön omakustannushintaan omistusosuuksien suhteessa. Omistajat, jotka ovat pääasiassa metsä- ja sähköyhtiöitä, käyttävät tuotetun sähkön itse tai myyvät sitä eteenpäin.
Olkiluoto 1:n ja Olkiluoto 2:n alkuperäiset nettosähkötehot olivat 660 MW, joita on erilaisilla modernisoinneilla nostettu lähelle 900:aa.[8] 20 MW:n tehonkorotuksia on suoritettu vuosina 2005–2006 ja 2010–2011.[9][10] Olkiluoto 3:n teho on 1 600 MW.
Olkiluodon ydinvoimalaitos saavutti vuonna 2014 käyttöhistoriansa suurimman tuotantomäärän 14,76 terawattituntia laitosyksiköiden yhteisen käyttökertoimen ollessa 96,0 prosenttia[2]. Tuotantoennätys on muuttunut vuosien mittaan useaan kertaan, esimerkiksi vuonna 2007 tehtiin siihenastinen ennätys, 14,4 terawattituntia.[11][12]
Ykkös- ja kakkosyksiköiden käyttölupa on voimassa vuoden 2038 loppuun asti. Edellinen käyttölupa oli voimassa 2018 loppuun, ja uusi lupa myönnettiin syyskuussa 2018.[13]
Olkiluoto 1 ja 2 ovat lähes identtisiä (tosin hieman modernimpia) Ruotsissa sijaitsevien Forsmarkin 1 ja 2 -voimaloiden kanssa. Vuonna 2011 tehtyjen EU-stressitestien mukaan noin tunnin mittainen täydellinen sähkökatkos johtaisi reaktorin sydämen vaurioitumiseen.[14] TVO asensi uuden, sähkövirrasta riippumattoman järjestelmän, jolla reaktoreihin voidaan pumpata jäähdytysvettä sähkökatkoksen aikana. Järjestelmä valmistui vuonna 2018.[15]
Laitosyksikkö | Toimittaja, tyyppi | Nettosähköteho | Rakentaminen aloitettu | Kytketty verkkoon | Kaupallinen tuotanto |
---|---|---|---|---|---|
Olkiluoto 1 [16] | ASEA-Atom, BWR | 890 MW | 1.2.1974 | 2.9.1978 | 10.10.1979 |
Olkiluoto 2 [17] | ASEA-Atom, BWR | 890 MW | 1.11.1975 | 18.2.1980 | 10.7.1982 |
Olkiluoto 3 [18] | Areva NP & Siemens AG, EPR | 1 600 MW | 12.8.2005 | 12.3.2022 | 16.4.2023 |
Olkiluoto 1 ja 2 ovat ASEA-Atomin (nykyään osa Westinghousea) 1970-luvun lopulla toimittamia kiehutusvesireaktoreita. Tuolloin ruotsalainen ydinalan osaaminen oli maailman huippua, tästä esimerkkinä pääkiertopumppujen sijoitus suoraan painesäiliön reuna-alueelle, jolloin reaktorisydämen jäähdytyskiertoon ei tarvita ulkoisia putkiluuppeja. Laitosten alkuperäinen sähköteho oli 660 MW, josta sitä on nostettu useiden vaiheiden jälkeen nykyiseen sähkötehoon (1984: 710 MW, 1998: 840 MW, 2006: 860 MW, 2010: 880 MW). Tehon nostot on mahdollistanut turbiinitekniikan modernisointi ja reaktorin lämpötehon kasvattaminen kehittyneen tekniikan myötä. Laitosyksiköiden kokonaishyötysuhde on noin 34 prosenttia.[19] TVO uusi molempien laitosten matalapaineturbiinit vuoden 2010 ja 2011 vuosihuolloissa, kuten myös ykkösyksikön generaattorin. Hyötysuhde parani muutosten seurauksena noin prosenttiyksikön, jolloin samalla reaktorin tuottamalla lämpöteholla saadaan tuotettua 25 megawattia enemmän sähkötehoa.
Laitosyksiköllä on sattunut yksi tapahtuma, joka luokiteltiin kansainvälisellä 7-portaisella INES-asteikolla luokkaan 2 eli merkittävä turvallisuuteen vaikuttava tapahtuma. 7. syyskuuta 1989 havaittiin 15 säätösauvassa ongelmia, jotka johtuivat säätösauvakoneistoon joutuneesta teräsjauhosta. Jauheen alkuperää ei saatu varmuudella selville. Jauheen poistamiseksi tehtiin mittavat puhdistustyöt, ja laitos käynnistettiin uudestaan 22. lokakuuta 1989.[20]
Reaktori koostuu painesäiliöstä, jonka sisällä on polttoaine, säätösauvat, höyrynerotin ja höyrynkuivain. Vesi pumpataan syöttövesipumpuilla reaktoriin, jossa se kiertää pääkiertopumppujen aikaansaamassa pääkiertovirtauksessa. Veden kiertäessä reaktorisydämen läpi osa siitä höyrystyy ja kulkee höyrynerottimen sekä höyrynkuivaimen kautta turbiinille veden palautuessa takaisin pääkiertovirtaukseen. Reaktorisydän koostuu 121 säätösauvasta ja 500 polttoainenipusta, joissa on uraania noin 90 tonnia. Reaktorin tehoa säädetään säätösauvoilla ja pääkiertopumpuilla. Tarvittaessa ketjureaktio voidaan nopeasti pysäyttää tekemällä pikasulku (alle 4 s), joka nostaa säätösauvat reaktoriin vedellä, joka on paineistettu typen avulla. Normaalisti säätösauvoja siirretään sähkömoottoreilla. Jos säätösauvat eivät toimi lainkaan, voidaan ketjureaktio silti pysäyttää pumppaamalla boorihappoa sisältävää vettä reaktoriin, jolloin neutronit absorboituvat booriin.[19]
Tietoja reaktorista | |
---|---|
Reaktorin lämpöteho | 2 500 MW |
Höyrynvirtaus | 1 260 kg/s |
Käyttöpaine | 70 bar |
Syöttöveden lämpötila | 185 °C |
Tuorehöyryn lämpötila | 286 °C |
Polttoainenippujen määrä | 500 |
Polttoainesauvoja nipussa | 91–100 |
Polttoainenipun massa | 292–331 kg |
Uraanin kokonaismassa | n. 90 t |
Säätösauvojen lukumäärä | 121 |
Turbiinilaitos koostuu yhdestä korkeapaineturbiinista ja neljästä matalapaineturbiinista, kaikki turbiinit ovat kaksivirtaustyyppisiä. Höyry paisuu ensin korkeapaineturbiinissa, josta se kulkee kosteudenerottimien ja välitulistimien kautta matalapaineturbiineille. Kosteudenerottimissa erotetaan höyrystä vesi ja välitulistimissa tulistetaan höyry, jonka jälkeen se paisuu matalapaineturbiineissa lauhduttimen paineeseen. Lauhduttimessa höyry tiivistyy vedeksi, jonka jälkeen se pumpataan lauhdepumpuilla kolmen matalapaine-esilämmittimen lävitse edelleen syöttövesipumpuille. Syöttövesi kulkee vielä kahden korkeapaine-esilämmittimen lävitse ennen saapumistaan reaktoriin. Tehoajolla turbiinissa kiertää kaikkien kiehutusvesilaitosten tapaan reaktorin neutronisäteilyssä aktivoitunut höyry eikä turbiinin luo pääse sen korkean säteilytason vuoksi.[19]
Tietoja turbiinilaitoksesta | |
---|---|
Tuorehöyryn paine | 67 bar |
Tuorehöyryn lämpötila | 283 °C |
Välitulistushöyryn paine | 6,5 bar |
Välitulistushöyryn lämpötila | 250 °C |
Kierrosluku | 3 000 rpm |
Lauhduttimen paine | 0,05 bar |
Jäähdytysveden määrä | 29 500 kg/s |
Jäähdytysveden lämpötilan nousu | 13 °C |
Olkiluoto 2 on lähes identtinen kuin Olkiluoto 1 muutamia pieniä poikkeuksia lukuun ottamatta. Laitosyksikön teho nostettiin 880 megawattiin vuonna 2011 modernisoimalla turbiinitekniikkaa.[10] Uusimalla turbiinin merivesilauhduttimia ja korkeapaineturbiinin esilämmitin, sekä tehostamalla lauhteen kiertoa täydentävällä pumppausjärjestelmällä saatiin v. 2017 aikaan hyötysuhteen nousu. Tällöin tuotantoteho kasvoi ilman reaktorin lämpötehon nostoa.[21]
10. joulukuuta 2020 kello 12.22 laitoksella tapahtui vakava häiriö.[22] Venttiilin korjaustyön takia liian kuumaa vettä pääsi virtaamaan reaktoriveden puhdistusjärjestelmän suodattimille. Kuuma vesi liuotti suodattimista aineita, jotka puhdistusjärjestelmää käynnistettäessä pääsivät kulkeutumaan reaktoriin. Reaktorin sydämessä suodattimesta irronneet aineet aktivoituivat, mikä nosti höyrylinjoissa kulkevan höyryn radioaktiivisuuden hetkellisesti 3–4-kertaiseksi normaaliin verrattuna. Aktiivisuustason nousu käynnisti turvallisuusjärjestelmät, jotka toimivat suunnitellusti ja sulkivat suojarakennuksen eristysventtiilit, laukaisivat reaktorin pikasulun ja käynnistivät suojarakennuksen vesiruiskutuksen. Laitosta ohjaava henkilöstö toimi ohjeiden mukaisesti ja käynnisti laitoshätätilanteen kello 12.32.[23]
Tapahtumassa ei ollut viitteitä polttoainevuodosta, ja neljä tuntia myöhemmin laitoksen sisällä ei ollut enää poikkeuksellisia säteilytasoja. Työntekijät eivät altistuneet säteilylle, eikä tapahtumasta aiheutunut henkilövahinkoja. Säteilyturvakeskuksen (STUK) pääjohtaja Petteri Tiippanan mukaan laitokselta pääsi jonkin verran säteilyä ympäristöön, mutta kyse ei ole merkittävistä määristä. Omistajayhtiö Teollisuuden Voiman (TVO) mukaan poikkeavaa ulkoista päästöä ei tapahtunut. STUK ja TVO käynnistivät häiriön vuoksi valmiusorganisaation toiminnan. Viranomaiset nostivat valmiustasoaan eri organisaatioissa, ja myös Satakunnan sairaanhoitopiiri nosti valmiuttaan. Vastaavanlaista tilannetta ei ole sattunut aikaisemmin Suomessa, ja tapahtuma oli hyvin poikkeuksellinen.[22][24] Teollisuuden Voima tiedotti tapahtumasta Säteilyturvakeskusta puolessa tunnissa ja Eurajoen kuntaa kolmessa tunnissa.[25] Reaktori käynnistettiin uudestaan 19. joulukuuta, eli yhdeksän päivää häiriön jälkeen.[26]
Joulukuun 2020 häiriön INES-luokitus on 0, eli poikkeuksellinen tapahtuma, jonka turvallisuusmerkitys on kuitenkin niin vähäinen, että sitä ei voida sijoittaa varsinaiselle asteikolle.[27] Laitosyksiköllä on sattunut kaksi tapahtumaa, jotka luokiteltiin kansainvälisellä 7-portaisella INES-asteikolla luokkaan 2 eli merkittävä turvallisuuteen vaikuttava tapahtuma. 10. syyskuuta 1985 kolmessa ylipainesuojausjärjestelmän ohjausventtiilissä todettiin vika, joka johtui niihin kertyneistä epäpuhtauksista. 12. huhtikuuta 1991 laitos menetti yhteyden ulkoiseen sähköverkkoon 7,5 tunnin ajaksi muuntajan tulipalon ja siitä seuranneen oikosulun takia. Tänä aikana turvallisuusjärjestelmät saivat sähköä neljän dieselgeneraattorin avulla.[20]
Olkiluoto 2 -laitosyksikön sähköntuotanto keskeytettiin perjantaina 18. elokuuta 2023 aamuyöstä turbiinilaitoksen generaattorilla havaitun kosteuden nousun vuoksi. Syyksi selvisi vuoto vesijäähdytteisen generaattorin jäähdytysjärjestelmässä. Asialla ei ollut vaikutusta ydinturvallisuuteen.[28] Vikaantunut roottori vaihdettiin, ja laitos palasi sähköntuotantoon 4. syyskuuta. Tuotantokatkos kesti 17 vuorokautta.[29]
Olkiluoto 3 on EPR-tyyppinen voimala, jossa lajissa se on eräs maailman ensimmäisistä. Valmistuessaan 1 600 MW:n reaktori on sähköteholtaan kolmanneksi suurin. Kiinaan, Shandongin maakuntaan, rakennettu Taishanin ydinvoimalaitos valmistui ennen Olkiluoto 3 -voimalaa. Kyseisessä laitoksessa on kaksi 1 750 MW reaktoria, jotka valmistuivat 2018 ja 2019.[30] Voimala on kehitetty hyödyntäen ranskalaisten N4- (entinen Framatome ANP) ja saksalaisten Konvoi-painevesilaitosten kokemuksia. Se edustaa niin kutsuttua kolmannen sukupolven ydinvoimalaitostekniikkaa. Laitoksen perusratkaisut pohjautuvat jo käytössä olevaan tekniikkaan, mutta sen energiataloutta, polttoaineenkulutusta, huollettavuutta ja turvallisuutta on edelleen kehitetty. Reaktorissa on varauduttu myös reaktoriytimen sulamiseen, ja kaksinkertainen suojarakennus on mitoitettu kestämään matkustajalentokoneen törmäys. Valmistuttuaan voimala työllistää noin 200 henkeä. Voimalalle myönnettiin käyttölupa 7. maaliskuuta 2019 ja se on voimassa vuoden 2038 loppuun saakka.[31]
Suomen viidennen ydinvoimalaitosyksikön rakentaminen Olkiluodon ydinvoimalaitokseen aloitettiin 12. elokuuta 2005[18] eduskunnan äänestettyä rakentamisen puolesta vuonna 2002. Voimalaitoksen piti alun perin alkaa tuottaa sähköä vuoden 2009 kesäkuussa, mutta voimalan valmistumista lykättiin lukuisia kertoja.[32] Sähköntuotanto alkoi 12. maaliskuuta 2022.[3] Voimalaitoksen arvioitu kokonaiskustannus on noussut alkuperäisestä noin 3 miljardista eurosta noin 8,5 miljardiin euroon.[33]
Toukokuussa 2020 säteilyturvakeskus löysi voimalasta uusia merkittäviä vikoja ja puutteita. Reaktorin primääripiirin ylipainesuojaus todettiin puutteelliseksi. Sen paineistimen kolmesta varoventtiilista kaikissa havaittiin säröjä ja yhden todettiin tiiveyskokeen yhteydessä vuotavan. Vika on hyvin merkittävä, koska järjestelmä kuuluu laitoksen korkeimpaan turvallisuusluokkaan. Saman paineistimen yhdyslinjan liiallista värähtelyä on yritetty ratkaista vuosia tuloksetta. Stuk havaitsi myös yksikön hätädieselgeneraattoreissa suunnittelupuutteita, jotka koskevat järjestelmän laitteiden ja osien mitoitusvirheitä. Esimerkiksi moottorien jäähdytysnesteen liityntäpalkeissa havaittiin säröilyä, joka on merkittävä puute. Stuk esitti uusia vaatimuksia vakavaa onnettomuutta koskevasta ohjeistosta sekä laitosautomaation häiriötilanteiden hallinnasta.[34]
Painevesilaitoksessa reaktorissa oleva vesi ei kiehu vaan kuumentunut primääripiirin vesi höyrystää sekundääripiirin vettä höyrystimissä, jotka ovat U-putkityyppisiä lämmönvaihtimia. Primääripiiri koostuu reaktorista ja paineistimesta, sekä neljästä pääkiertopiiristä, joissa kussakin on pääkiertopumppu, höyrystin ja tarvittavat putkistot. Reaktorin pikasulku voidaan tehdä pudottamalla säätösauvat tai pumppaamalla booripitoista vettä reaktoriin.
Tietoja reaktorista | |
---|---|
Reaktorin lämpöteho | 4 300 MW |
Primääripiirin virtaus | 22 250 kg/s |
Käyttöpaine | 155 bar |
Reaktoriin tulevan veden lämpötila | 295,9 °C |
Reaktorista lähtevän veden lämpötila | 327,5 °C |
Polttoainenippujen määrä | 241 |
Polttoainesauvoja nipussa | 265 |
Polttoainenipun massa | 735 kg |
Uraanin kokonaismassa | n. 128 t |
Polttoaineen kulutus | noin 32 t vuodessa |
Säätösauvojen lukumäärä | 89 |
Siemensin valmistama turbiinilaitos koostuu yhdestä korkeapaineturbiinista ja kolmesta matalapaineturbiinista[35], muuten prosessi on hyvin samankaltainen kuin kahdella aikaisemmallakin laitosyksiköllä. Esilämmittimiä on enemmän kuin vanhemmilla laitoksilla. Painevesilaitoksen turbiinin luo pääsee myös käytön aikana, koska primääripiirin aktivoitunut vesi kiertää ainoastaan reaktorirakennuksen sisällä.
Tietoja turbiinilaitoksesta | |
---|---|
Tuorehöyryn paine | 75,5 bar |
Tuorehöyryn lämpötila | 290 °C |
Tuorehöyryn massavirta | 2 443 kg/s |
Välitulistushöyryn paine | 9,5 bar |
Välitulistushöyryn lämpötila | 278 °C |
Kierrosluku | 1 500 rpm |
Lauhduttimen paine | 0,03 bar |
Jäähdytysveden määrä | 57 000 kg/s |
TVO:n mukaan vuonna 2005 yli 60 suomalaista yritystä oli osakkaana OL3-hankkeessa.[36] Osakkaat rahoittavat hankkeen ja jakavat laitoksen tuottaman sähkön osakkuuksien suhteessa.
EPR-reaktori on sunniteltu niin, että se voi käyttää polttoaineena niin sanottua MOX-polttoainetta, joka tarkoittaa käytetystä ydinpolttoaineesta jalostettua tai purettujen ydinaseiden ydinmateriaalin jatkojolaestettua polttoainetta. Osin lakisyistä Olkiluoto 3 ei käytä MOX-polttoainetta.
Dokumentti Atomin paluu kertoo Olkiluoto 3 -ydinvoimalan rakennushankkeesta. Atomin paluu sai ensi-iltansa Suomen elokuvateattereissa 6. marraskuuta 2015.[37]
Teollisuuden Voima teki vuosina 2007–2008 ympäristövaikutusten arvioinnin (YVA) Olkiluotoon sijoitettavalle neljännelle ydinvoimalaitosyksikölle, jonka sähköteho olisi 1 000–1 800 megawattia. Tavoitteena oli rakentamisen aloittaminen 2013 ja voimalaitoksen ottaminen käyttöön noin 2018.[38] YVA-selostus saatiin valmiiksi ja jätettiin työ- ja elinkeinoministeriölle 14. helmikuuta 2008.[39]
Säteilyturvakeskus julkaisi lausuntonsa YVA-selostuksesta 22. huhtikuuta 2008. Säteilyturvakeskus totesi YVA-selostuksen kattavan Olkiluodon mahdollisen neljännen laitosyksikön ympäristövaikutukset STUKin kannalta. Lausunnossa todettiin kuitenkin parantamisen tarvetta muun muassa merenpinnan nousun, mahdollisen onnettomuuden vaikutusten ja väestönsuojelutoimien ja jäähdytysvesiratkaisujen osalta. Niitä on esitettävä kattavammin mahdollisessa rakentamislupahakemuksessa.[40]
Teollisuuden Voima jätti 25. huhtikuuta 2008 valtioneuvostolle periaatepäätöshakemuksen neljännen ydinvoimalaitosyksikön rakentamisesta Olkiluotoon. Samaan aikaan Posiva Oy toimitti periaatepäätöshakemuksen OL4:n käytetyn ydinpolttoaineen huollosta.[41]
TVO esitti tiedotteessaan, että Olkiluoto 4:n rakentaminen on yhteiskunnan kokonaisedun mukaista, sillä uusi yksikkö auttaa vähentämään merkittävästi sähköntuotannon hiilidioksidipäästöjä ja sähkön tuontiriippuvuutta sekä lisää kohtuuhintaisen perusvoiman tuotantoa Suomessa.[42] TVO ilmoitti hakemuksessaan harkitsevansa viittä eri laitosvaihtoehtoa:
Alustavassa turvallisuusarviossaan Säteilyturvakeskus totesi, ettei mikään laitosvaihtoehdoista sellaisenaan täytä suomalaisia turvallisuusvaatimuksia, mutta että kaikki laitosvaihtoehdot ovat muokattavissa täyttämään suomalaiset vaatimukset. Olkiluodon laitospaikka soveltuu myös muutoin uuden ydinvoimalaitosyksikön rakentamiseen.[43]
Periaatepäätöshakemuksesta kuultiin alueen kuntia, eri viranomaisia ja useita etujärjestöjä. Ympäristöministeriön näkemyksen mukaan Olkiluoto soveltuu hyvin uuden ydinvoimalaitosyksikön sijaintipaikaksi.[44] Ulkoasiainministeriön mukaan Suomessa käynnissä olevien yksiköiden hyvä luotettavuus ja Olkiluoto 3 -yksikön rakennustyöt ovat osaltaan vaikuttaneet myönteisesti Suomi-kuvaan.[45] Ministeriöistä kriittisin oli maa- ja metsätalousministeriö, joka edellytti myös uusiutuvan energian käytön ja energian säästötoimien lisäämistä, mikäli ydinvoimalaitosyksikkö päätetään rakentaa. Lisäksi OL4-yksikön lauhdevesijärjestelmä olisi varustettava kalaesteillä, jotka vähentäisivät kalastukselle aiheutuvaa haittaa.[46]
Valtioneuvosto hyväksyi periaatepäätöshakemuksen, minkä jälkeen myös eduskunta hyväksyi sen 1. heinäkuuta 2010 äänin 120–72.[6]
Tammikuussa 2013 TVO tiedotti, että kaikki viisi laitostoimittajaa ovat tehneet tarjouksen laitoksen rakentamisesta. Rakentamislupahakemus oli tarkoitus jättää vuoteen 2015 mennessä.[47]
Vuonna 2015 TVO ilmoitti, että se ei tule hakemaan rakentamislupaa Olkiluoto 4 -yksikölle. Tärkein syy hankkeen perumiseen oli Olkiluoto 3 -voimalaitoksen viivästyminen.[48]
Olkiluodon reaktoreiden käytetty ydinpolttoaine varastoidaan ensin reaktorirakennuksissa sijaitsevissa vesialtaissa noin viiden vuoden ajan. Sen jälkeen polttoaine siirretään laitosalueella sijaitsevaan käytetyn polttoaineen varastoon, jonka vesialtaissa sitä varastoidaan kymmeniä vuosia. Varaston kapasiteettia nostettiin vuonna 2014 rakentamalla kolme uutta vesiallasta. Laajennuksessa otettiin huomioon myös kolmannen reaktorin tarpeet. Vuoden 2017 lopussa Olkiluodossa oli varastoituna yhteensä 8 924 käytettyä polttoainenippua, jotka sisälsivät 1 498 tonnia uraania.[49]
Suomessa syntyvä korkea-aktiivinen ydinjäte eli käytetty ydinpolttoaine loppusijoitetaan kuparikapseleissa Olkiluodon kallioperään 400–450 metrin syvyyteen. Loppusijoituksesta vastaava yritys Posiva sai Onkalo-nimiselle loppusijoitustilalle rakentamisluvan marraskuussa 2015.[50]
Olkiluodossa syntyvä matala- ja keskiaktiivinen ydinjäte loppusijoitetaan Olkiluodossa sijaitsevaan VLJ-luolaan. Jäte pakataan betonilaatikoihin ja lasketaan 60–95 metrin syvyydellä kalliossa sijaitseviin siiloihin. Olkiluodon VLJ-luola otettiin käyttöön vuonna 1992. Sinne sijoitetaan myös teollisuudesta, sairaanhoidosta ja tutkimuksesta peräisin olevia radioaktiivisia jätteitä. Kun Olkiluodon reaktorit aikanaan puretaan, niin purettaessa syntyvät matala- ja keskiaktiiviset jätteet sijoitetaan myös VLJ-luolaan. Sen jälkeen siilot täytetään betonilla. Loviisan ydinvoimalaitoksella on vastaava loppusijoitustila matala- ja keskiaktiiviselle jätteelle.[51]
Voimalaitoksen lähellä sijaitsee ydinvoimayhtiö TVO:n ylläpitämä vierailukeskus, jossa voi käydä tutustumassa ydinsähkön tuotantoon sekä ydinjäteyhtiö Posivan kaavailemaan korkea-aktiivisen ydinjätteen loppusijoitukseen. Vierailukeskuksessa on myös ilmaiseksi jaossa TVO:n ja sen yhteistyökumppanien materiaalia ydinvoimaan liittyen.[52]