Nykymaailmassa Suora kulma on aihe, joka on herättänyt paljon kiinnostusta ja keskustelua. Vuosien ajan Suora kulma on ollut tutkimuksen ja tutkimuksen kohteena, ja sen merkitys on kasvanut ajan myötä. Sekä akateemisella alalla että suurella yleisöllä Suora kulma on kiinnittänyt monien ihmisten huomion, koska se on merkityksellinen yhteiskunnan eri osa-alueilla. Tässä artikkelissa tutkimme erilaisia Suora kulma:een liittyviä näkökohtia sen alkuperästä ja kehityksestä sen nykyiseen vaikutukseen. Kattavan analyysin avulla pyrimme ymmärtämään syvällisesti, miten Suora kulma on vaikuttanut eri alueisiin ja mitä näkökulmia tähän aiheeseen on avautumassa.
Suora kulma on geometriassa sellainen kulma, joka on yhtä suuri kuin sen kumpi tahansa vieruskulma.[1] Suoran kulman suuruus on neljäsosa täydestä kulmasta tai puolet oikokulmasta eli 90°. Se on tärkein arjessa käytettävä kulma.[2] Janojen kohtisuoruus on synonyymi sille, että janojen väliset kulmat ovat suoria. Suomenkielinen ilmaus suora kulma viitannee "pystyssä olemiseen" eli "suorassa seisomiseen".[3]
Suora kulma on
Suoran kulman merkitseminen tasolle käyttämällä vain viivainta ja harppia oli aiemmin tärkeä käytännön taito. Suoran kulman konstruoimiseksi tunnetaan runsaasti erilaisia menetelmiä. Seuraavassa on muutama menetelmä.
Käsityön ammattilaisilla on käytössään monia työkaluja suoran kulman määrittämiseksi. Tunnetuin on suorakulma, jolla voidaan merkitä tai tarkistaa kulman suoruus. Myös normaalin merkitsemiseen on käytössä sekä asteikolla varustettuja mittalevyjä että optisia välineitä. Uusimmat laitteet osoittavat kohtisuoruuden laser säteellä.
Ei ole tietoa siitä, koska suora kulma on opittu mittaamaan, sillä jo ensimmäisillä kirjoitettua tietoa jälkeensä jättäneillä kansoilla tiedetään tämä taito jo olleen. Yksinkertaisin keino muodostaa suora kulma perustui painovoimaan: luotinarun ja vesivaa'an välinen kulma on suora. Toinen yleisesti tunnettu keino muodostaa suora kulma vakatasossa oli käyttää narua, johon oli solmittu tasavälein 13 solmua. Kun tämä naru pingotettiin kolmioksi, jonka sivuiksi asetettiin kolme, neljä ja viisi solmuväliä, saatiin suorakulmainen kolmio. Tämä sääntö tunnetaan yhtenä numerokolmikkona, joka toteuttaa Pythagoraan lauseen.[7]
Laajalti tunnetussa oppikirjassaan Alkeet Euklides määrittelee kirjassa I määritelmässä 10 kohtisuorat suorat ja määritelmässä 4, että kaikki suorat kulmat ovat yhtä suuret. Määritelmissä 11 ja 12 nimeää hän terävät kulmat suoraa kulmaa pienemmiksi ja tylpät suuremmiksi.[8]
Muita kulman nimityksiä: nollakulma, terävä kulma, tylppä kulma, kovera kulma, oikokulma, kupera kulma ja täysi kulma.